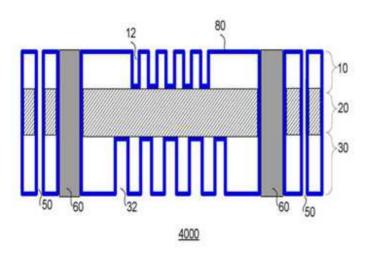
연료전지용 초경량 바이폴라 플레이트

■ 보유기관 한국과학기술원

■ 주요 발명자 권세진 | 이종광 | 김기인


■ 권리사항				
· 출원번호	10-2009-0012911			
· 출원일	2009년 02월 17일			
· 현재상태	■ 등록 □ 공개(심사중) □ 미공개			
■ 기술완성도	□ 기초연구단계 ■ 실험단계 □ 시작품단계 □ 제품화단계			

■ 적용가능분야 및 목표시장 연료전지

■ 기술 개요

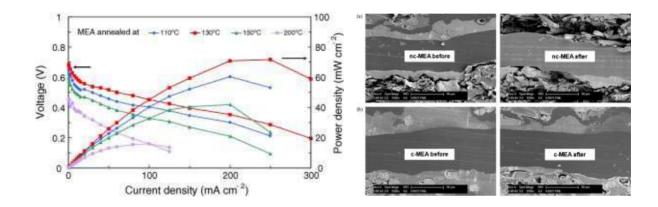
본 기술에 따른 연료전지용 바이폴라 플레이트는 연료 유동 유로가 형성된 비 전도성 연료극막 공기 유동 유로가 형성된 비 전도성 공기극막 상기 연료극막과 공기극막 사이에 구비되며 상기 연료와 상기 공기가 혼합되지 않도록 분리시키는 비 전도성 분리막 및 상기 연료극막, 분리막 및 공기극막의 순차적 적층시 상기 연료극막에서 상기 분리막을 거쳐 상기 공기극막으로 전류가 이동되도록 전류 이동 경로를 제공하는 금속부를 포함하여 구성된 특징이 있으며, 상세하게, 상기 연료극막, 공기극막 및 분리막 각각은 유리, 바 람직하게는 감광성 유리인 특징이 있음

■ 기술 개념도

* 부호의 설명

10 : 공기극막 20 : 분리막 30 : 연료극막 60 : 금속 로드

70, 80 : 금속 증착층 12 : 공기 유동 유로 32 : 연료 유동 유로


11, 21, 31 : 감광성 유리 25 : 냉각 유체 유로

[그림] 원료전지용 초경량 바이폴라 폴레이트의 대표도

■ 기술 내용 및 동향

[기술의 특장점]

기존 일자형 유로의 문제점을 개선하고 바이폴라 플레이트의 연료 공급을 원활하게 하기 위해 분산형 구조의 유로, 즉 연료 유체의 주입구, 배출구에 삼각형 모양의 배플(baffle)을 구비함으로써 연료의 분산능력 향상

[열처리 온도별 MEA 세포의 분극 곡선]

[The cross-sectional SEM images]

[기술동향]

	AFC	PEMFC	DMFC	PAFC	MCFC	SOFC	
전해질	кон	고분자막	고분자막	인산	탄산염	고체산화물	
이온전도체	OH-	H ⁺	H ⁺	н+	CO ₃ ²⁻	O ²⁻	
작동온도(℃)	상온~80	상은~80	상온~80	150~200	600~700	800~1000	
연료극	백금 또는 다공성 니켈	백금	백금-루테늄	백금	니켈-크롬	니켈	
공기극	백금 또는 은(Ag)	백금	백금	백금	산화니켈 페롭스카 (금속산		
발전효율(%)	~35	35~42	~35	35~42	50~65	50~65	
산화제	공기	공기	공기	공기	공기+CO2	O ₂ 공기	
연료	수소	수소	메탄올	수소	수소	수소	
용도	우주선, 잠수함 등 특수용도	가정용, 자동차	휴대용 전자기기	건물용 발전시스템	발전플랜트	발전플랜트	

[연료전지 종류와 특징]

	관련 기술	
4	출원번호	10-2009-0132691
•	발명의 명칭	연료전지용 초경량 바이폴라 플레이트
g 출원번호 US 2009-417923		US 2009-417923
	발명의 명칭	ULTRA-LIGHT BIPOLAR PLATE FOR FUEL CELL

■ 시장 동향

[시장 정의 및 시장규모]

구분	1	2007	2008	2009	2010	2015	2020	2025	2030
PEMFC	천대	2	7	15	27	309	841	1,070	1,990
	억엔	167	370	1,036	2,413	9,357	12,556	15,225	16.855
DMFC	천대	0.3	0.6	1.0	4.5	93	272	450	585
	억엔	5	8	14	25	200	360	440	530
SOFC	천대	130	225	315	650	3,100	7,200	10,800	15,000
	억엔	15	20	30	90	270	550	740	900
MCFC	천대	4	12	16	24	32	36	46	60
	억엔	12	32	40	54	70	72	82	100
PAFC	천대	25	35	50	110	125	170	220	320
	억엔	8	10	14	30	33	44	55	75
합계	천대	161	280	397	816	3,659	8,519	12,586	17.955
	억엔	207	440	1,134	2,612	9,930	13,582	16.542	18,460

자료: J-economic Center

[전세계 주요 연료전지 시장 규모 추이]

■ 문의처	
· 소속	한국과학기술원
· 담당자	김진형 선임기술원
· 연락처	042-350-4792, largo@kaist.ac.kr